Algorithm 为给定字符串生成所有唯一的子字符串

Algorithm 为给定字符串生成所有唯一的子字符串,algorithm,language-agnostic,Algorithm,Language Agnostic,给定一个字符串s,生成一组其唯一子字符串的最快方法是什么 例如:对于str=“aba”我们将得到substrs={“a”、“b”、“ab”、“ba”、“aba”} 简单的算法是在每次迭代中遍历整个字符串,生成长度为1..n的子字符串,产生O(n^2)上界 是否可能有更好的界限 (从技术上讲,这是家庭作业,所以也只欢迎指点)对于大型oh。。。你能做的最好的是O(n^2) 无需重新发明轮子,它不是基于字符串,而是基于集合,因此您必须将这些概念应用于您自己的情况 算法 没有比O(n2)更快的方法,

给定一个字符串
s
,生成一组其唯一子字符串的最快方法是什么

例如:对于
str=“aba”
我们将得到
substrs={“a”、“b”、“ab”、“ba”、“aba”}

简单的算法是在每次迭代中遍历整个字符串,生成长度为
1..n
的子字符串,产生
O(n^2)
上界

是否可能有更好的界限


(从技术上讲,这是家庭作业,所以也只欢迎指点)

对于大型oh。。。你能做的最好的是O(n^2)

无需重新发明轮子,它不是基于字符串,而是基于集合,因此您必须将这些概念应用于您自己的情况

算法


没有比O(n2)更快的方法,因为一个字符串中总共有O(n2)个子字符串,所以如果必须生成它们所有,在最坏的情况下,它们的数量将是
n(n+1)/2,因此是O(n2)Ω(n2)的上下界。

因为可能存在
n*(n+1)/2不同的子字符串(+1表示空的子字符串),我怀疑你能比
O(n*2)
(最坏情况)更好。最简单的方法是生成它们,并使用一些很好的
O(1)
查找表(如hashmap),以便在找到重复项时立即排除重复项。

正如其他海报所说,给定字符串可能有O(n^2)个子字符串,因此打印它们的速度不可能比这快。然而,存在一种可以在线性时间内构造的集合的有效表示:。

第一种是蛮力,它的复杂性为O(N^3),可以降到O(N^2 log(N)) 第二个使用HashSet,其复杂性为O(N^2) 第三种方法是使用LCP,首先查找给定字符串的所有后缀,该字符串具有最坏情况O(N^2)和最佳情况O(N Log(N))

第一个解决方案:-

import java.util.Scanner;

public class DistinctSubString {
  public static void main(String[] args) {
    Scanner in = new Scanner(System.in);
    System.out.print("Enter The string");
    String s = in.nextLine();
    long startTime = System.currentTimeMillis();
    int L = s.length();
    int N = L * (L + 1) / 2;
    String[] Comb = new String[N];
    for (int i = 0, p = 0; i < L; ++i) {
      for (int j = 0; j < (L - i); ++j) {
        Comb[p++] = s.substring(j, i + j + 1);
      }
    }
    /*
     * for(int j=0;j<N;++j) { System.out.println(Comb[j]); }
     */
    boolean[] val = new boolean[N];
    for (int i = 0; i < N; ++i)
      val[i] = true;
    int counter = N;
    int p = 0, start = 0;
    for (int i = 0, j; i < L; ++i) {
      p = L - i;
      for (j = start; j < (start + p); ++j) {
        if (val[j]) {
          //System.out.println(Comb[j]);
          for (int k = j + 1; k < start + p; ++k) {
            if (Comb[j].equals(Comb[k])) {
              counter--;
              val[k] = false;
            }
          }
        }

      }

      start = j;
    }
    System.out.println("Substrings are " + N
        + " of which unique substrings are " + counter);
    long endTime = System.currentTimeMillis();
    System.out.println("It took " + (endTime - startTime) + " milliseconds");
  }
}
import java.util.*;

public class DistictSubstrings_usingHashTable {

  public static void main(String args[]) {
    // create a hash set

    Scanner in = new Scanner(System.in);
    System.out.print("Enter The string");
    String s = in.nextLine();
    int L = s.length();
    long startTime = System.currentTimeMillis();
    Set<String> hs = new HashSet<String>();
    // add elements to the hash set
    for (int i = 0; i < L; ++i) {
      for (int j = 0; j < (L - i); ++j) {
        hs.add(s.substring(j, i + j + 1));
      }
    }
    System.out.println(hs.size());
    long endTime = System.currentTimeMillis();
    System.out.println("It took " + (endTime - startTime) + " milliseconds");
  }
}
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;

public class LCPsolnFroDistinctSubString {

  public static void main(String[] args) throws IOException {

    BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    System.out.println("Enter Desired String ");
    String string = br.readLine();
    int length = string.length();
    String[] arrayString = new String[length];
    for (int i = 0; i < length; ++i) {
      arrayString[i] = string.substring(length - 1 - i, length);
    }

    Arrays.sort(arrayString);
    for (int i = 0; i < length; ++i)
      System.out.println(arrayString[i]);

    long num_substring = arrayString[0].length();

    for (int i = 0; i < length - 1; ++i) {
      int j = 0;
      for (; j < arrayString[i].length(); ++j) {
        if (!((arrayString[i].substring(0, j + 1)).equals((arrayString)[i + 1]
            .substring(0, j + 1)))) {
          break;
        }
      }
      num_substring += arrayString[i + 1].length() - j;
    }
    System.out.println("unique substrings = " + num_substring);
  }

}
  public static void printAllCombinations(String soFar, String rest) {
    if(rest.isEmpty()) {
        System.out.println(soFar);
    } else {
        printAllCombinations(soFar + rest.substring(0,1), rest.substring(1));
        printAllCombinations(soFar , rest.substring(1));
    }
}

Test case:-  printAllCombinations("", "abcd");
它只能在o(n^2)时间内完成,因为字符串的唯一子字符串总数将为n(n+1)/2

例如:

字符串s=“abcd”

传递0:(所有字符串的长度均为1)

a、 b、c、d=4个字符串

过程1:(所有字符串的长度均为2)

ab、bc、cd=3个字符串

过程2:(所有字符串的长度均为3)

abc,bcd=2个字符串

过程3:(所有字符串的长度均为4)

abcd=1个字符串

利用这个类比,我们可以写出时间复杂度为o(n^2)且空间复杂度为常数的解

源代码如下:

#include<stdio.h>

void print(char arr[], int start, int end)
{
    int i;
    for(i=start;i<=end;i++)
    {
        printf("%c",arr[i]);
    }
    printf("\n");
}


void substrings(char arr[], int n)
{
    int pass,j,start,end;
    int no_of_strings = n-1;

    for(pass=0;pass<n;pass++)
    {
        start = 0;
        end = start+pass;
        for(j=no_of_strings;j>=0;j--)
        {
            print(arr,start, end);
            start++;
            end = start+pass;
        }
        no_of_strings--;
    }

}

int main()
{   
    char str[] = "abcd";
    substrings(str,4);
    return 0;
}
#包括
无效打印(字符arr[],整数开始,整数结束)
{
int i;

对于(i=start;i您的程序没有提供唯一的SBSTRIN)


请使用输入
abab
进行测试,输出应为
aba、ba、bab、abab

这是我的Python代码。它生成任何给定字符串的所有可能的子字符串

def find_substring(str_in):
    substrs = []
    if len(str_in) <= 1:
        return [str_in]

    s1 = find_substring(str_in[:1])
    s2 = find_substring(str_in[1:])

    substrs.append(s1)
    substrs.append(s2)
    for s11 in s1:
        substrs.append(s11)            
        for s21 in s2:            
            substrs.append("%s%s" %(s11, s21))

    for s21 in s2:
        substrs.append(s21)

    return set(substrs)
def find_子字符串(str_in):
substrs=[]
如果len(str_in)朴素算法需要O(n^3)时间而不是O(n^2)时间。
有O(n^2)个子字符串。
如果你把O(n^2)个数的子串,例如set,
然后set比较每个字符串的O(lgn)比较,以检查该字符串是否始终存在于集合中。
此外,字符串比较需要O(n)时间。
因此,如果使用set,则需要O(n^3 lgn)时间。如果使用哈希表而不是set,则可以减少O(n^3)时间

关键是它是字符串比较,而不是数字比较

所以最好的算法之一,假设你使用后缀数组和最长公共前缀(LCP)算法,它减少了这个问题的O(n^2)时间。 使用O(n)时间算法构建后缀数组。 LCP的时间=O(n)时间。 因为对于后缀数组中的每一对字符串,do LCP so总时间是O(n^2)时间来查找不同子字符串的长度

此外,如果要打印所有不同的子字符串,则需要O(n^2)个时间。

类程序
{
List lst=新列表();
String str=“abc”;
公共无效函数()
{
子集(0,“”);
lst.Sort();
lst=lst.Distinct().ToList();
foreach(lst中的字符串项)
{
控制台写入线(项目);
}
}
无效子集(整数n,字符串s)
{
对于(int i=n;i
这将打印唯一的子字符串。

类的子字符串{
公共静态void main(字符串参数[]){
String String=“Hello”,sub=null;
System.out.println(“字符串+字符串+的子字符串为:-”);
对于(int i=0;i对于(int j=1;j使用后缀数组和最长公共前缀来尝试此代码。它也可以给您提供唯一子串的总数。代码可能在VisualStudio中提供堆栈溢出,但在Eclipse C++中运行良好。这是因为它返回函数的向量。还没有测试它对非常长的字符串。将这样做并报告。

  // C++ program for building LCP array for given text
#include <bits/stdc++.h>
#include <vector>
#include <string>
using namespace std;

#define MAX 100000
int cum[MAX];


// Structure to store information of a suffix
struct suffix
{
    int index; // To store original index
    int rank[2]; // To store ranks and next rank pair
};

// A comparison function used by sort() to compare two suffixes
// Compares two pairs, returns 1 if first pair is smaller
int cmp(struct suffix a, struct suffix b)
{
    return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0):
        (a.rank[0] < b.rank[0] ?1: 0);
}

// This is the main function that takes a string 'txt' of size n as an
// argument, builds and return the suffix array for the given string
vector<int> buildSuffixArray(string txt, int n)
{
    // A structure to store suffixes and their indexes
    struct suffix suffixes[n];

    // Store suffixes and their indexes in an array of structures.
    // The structure is needed to sort the suffixes alphabatically
    // and maintain their old indexes while sorting
    for (int i = 0; i < n; i++)
    {
        suffixes[i].index = i;
        suffixes[i].rank[0] = txt[i] - 'a';
        suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1;
    }

    // Sort the suffixes using the comparison function
    // defined above.
    sort(suffixes, suffixes+n, cmp);

    // At his point, all suffixes are sorted according to first
    // 2 characters. Let us sort suffixes according to first 4
    // characters, then first 8 and so on
    int ind[n]; // This array is needed to get the index in suffixes[]
    // from original index. This mapping is needed to get
    // next suffix.
    for (int k = 4; k < 2*n; k = k*2)
    {
        // Assigning rank and index values to first suffix
        int rank = 0;
        int prev_rank = suffixes[0].rank[0];
        suffixes[0].rank[0] = rank;
        ind[suffixes[0].index] = 0;

        // Assigning rank to suffixes
        for (int i = 1; i < n; i++)
        {
            // If first rank and next ranks are same as that of previous
            // suffix in array, assign the same new rank to this suffix
            if (suffixes[i].rank[0] == prev_rank &&
                    suffixes[i].rank[1] == suffixes[i-1].rank[1])
            {
                prev_rank = suffixes[i].rank[0];
                suffixes[i].rank[0] = rank;
            }
            else // Otherwise increment rank and assign
            {
                prev_rank = suffixes[i].rank[0];
                suffixes[i].rank[0] = ++rank;
            }
            ind[suffixes[i].index] = i;
        }

        // Assign next rank to every suffix
        for (int i = 0; i < n; i++)
        {
            int nextindex = suffixes[i].index + k/2;
            suffixes[i].rank[1] = (nextindex < n)?
                                suffixes[ind[nextindex]].rank[0]: -1;
        }

        // Sort the suffixes according to first k characters
        sort(suffixes, suffixes+n, cmp);
    }

    // Store indexes of all sorted suffixes in the suffix array
    vector<int>suffixArr;
    for (int i = 0; i < n; i++)
        suffixArr.push_back(suffixes[i].index);

    // Return the suffix array
    return suffixArr;
}

/* To construct and return LCP */
vector<int> kasai(string txt, vector<int> suffixArr)
{
    int n = suffixArr.size();

    // To store LCP array
    vector<int> lcp(n, 0);

    // An auxiliary array to store inverse of suffix array
    // elements. For example if suffixArr[0] is 5, the
    // invSuff[5] would store 0. This is used to get next
    // suffix string from suffix array.
    vector<int> invSuff(n, 0);

    // Fill values in invSuff[]
    for (int i=0; i < n; i++)
        invSuff[suffixArr[i]] = i;

    // Initialize length of previous LCP
    int k = 0;

    // Process all suffixes one by one starting from
    // first suffix in txt[]
    for (int i=0; i<n; i++)
    {
        /* If the current suffix is at n-1, then we don’t
        have next substring to consider. So lcp is not
        defined for this substring, we put zero. */
        if (invSuff[i] == n-1)
        {
            k = 0;
            continue;
        }

        /* j contains index of the next substring to
        be considered to compare with the present
        substring, i.e., next string in suffix array */
        int j = suffixArr[invSuff[i]+1];

        // Directly start matching from k'th index as
        // at-least k-1 characters will match
        while (i+k<n && j+k<n && txt[i+k]==txt[j+k])
            k++;

        lcp[invSuff[i]] = k; // lcp for the present suffix.

        // Deleting the starting character from the string.
        if (k>0)
            k--;
    }

    // return the constructed lcp array
    return lcp;
}

// Utility function to print an array
void printArr(vector<int>arr, int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    cout << endl;
}

// Driver program
int main()
{
    int t;
    cin >> t;
    //t = 1;

    while (t > 0)  {

        //string str = "banana";
        string str;

        cin >> str; // >> k;

        vector<int>suffixArr = buildSuffixArray(str, str.length());
        int n = suffixArr.size();

        cout << "Suffix Array : \n";
        printArr(suffixArr, n);

        vector<int>lcp = kasai(str, suffixArr);

        cout << "\nLCP Array : \n";
        printArr(lcp, n);

        // cum will hold number of substrings if that'a what you want (total = cum[n-1]
        cum[0] = n - suffixArr[0];

    //  vector <pair<int,int>> substrs[n];

        int count = 1;


        for (int i = 1; i <= n-suffixArr[0]; i++)  {
            //substrs[0].push_back({suffixArr[0],i});
            string sub_str = str.substr(suffixArr[0],i);
            cout << count << "  "  <<  sub_str << endl;
            count++;
        }

        for(int i = 1;i < n;i++)  {

            cum[i] = cum[i-1] + (n - suffixArr[i] - lcp[i - 1]);

            int end = n - suffixArr[i];
            int begin = lcp[i-1] + 1;
            int begin_suffix = suffixArr[i];

            for (int j = begin, k = 1; j <= end; j++, k++)  {

                //substrs[i].push_back({begin_suffix, lcp[i-1] + k});
        //      cout << "i push "  << i  << "   " << begin_suffix << " " << k << endl;
                string sub_str = str.substr(begin_suffix, lcp[i-1] +k);
                cout << count << "  "  <<  sub_str << endl;
                count++;

            }

        }

        /*int count = 1;

        cout << endl;

        for(int i = 0; i < n; i++){

            for (auto it = substrs[i].begin(); it != substrs[i].end(); ++it )    {

                string sub_str = str.substr(it->first, it->second);
                cout << count << "  "  <<  sub_str << endl;
                count++;
            }

        }*/


        t--;

    }

    return 0;
}
用于给定文本的LCP数组的代码> //C++程序 #包括 #包括 #包括 使用名称空间std; #定义最大100000 int cum[MAX]; //结构来存储后缀信息 结构后缀 { int index;//用于存储原始索引 int-rank[2];//存储列组和下一列组对 }; //sort()用于比较两个后缀的比较函数 //比较两对,如果第一对较小,则返回1 int cmp(结构后缀a,结构后缀b) { 返回(a.rank[0]==b.rank[0])?(a.rank[1]def uniq_substring(test): lista=[] [lista.append(test[i:i+k+1]) for i in range(len(test)) for k in range(len(test)-i) if test[i:i+k+1] not in lista and test[i:i+k+1][::-1] not in lista] print lista uniq_substring('rohit') uniq_substring('abab') ['r', 'ro', 'roh', 'rohi', 'rohit', 'o', 'oh', 'ohi', 'ohit', 'h', 'hi', 'hit', 'i', 'it', 't'] ['a', 'ab', 'aba', 'abab', 'b', 'bab']
class SubstringsOfAString {
    public static void main(String args[]) {

        String string = "Hello", sub = null;

        System.out.println("Substrings of \"" + string + "\" are :-");

        for (int i = 0; i < string.length(); i++) {
            for (int j = 1; j <= string.length() - i; j++) {
                sub = string.substring(i, j + i);
                System.out.println(sub);
            }
        }
    }
}
  // C++ program for building LCP array for given text
#include <bits/stdc++.h>
#include <vector>
#include <string>
using namespace std;

#define MAX 100000
int cum[MAX];


// Structure to store information of a suffix
struct suffix
{
    int index; // To store original index
    int rank[2]; // To store ranks and next rank pair
};

// A comparison function used by sort() to compare two suffixes
// Compares two pairs, returns 1 if first pair is smaller
int cmp(struct suffix a, struct suffix b)
{
    return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0):
        (a.rank[0] < b.rank[0] ?1: 0);
}

// This is the main function that takes a string 'txt' of size n as an
// argument, builds and return the suffix array for the given string
vector<int> buildSuffixArray(string txt, int n)
{
    // A structure to store suffixes and their indexes
    struct suffix suffixes[n];

    // Store suffixes and their indexes in an array of structures.
    // The structure is needed to sort the suffixes alphabatically
    // and maintain their old indexes while sorting
    for (int i = 0; i < n; i++)
    {
        suffixes[i].index = i;
        suffixes[i].rank[0] = txt[i] - 'a';
        suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1;
    }

    // Sort the suffixes using the comparison function
    // defined above.
    sort(suffixes, suffixes+n, cmp);

    // At his point, all suffixes are sorted according to first
    // 2 characters. Let us sort suffixes according to first 4
    // characters, then first 8 and so on
    int ind[n]; // This array is needed to get the index in suffixes[]
    // from original index. This mapping is needed to get
    // next suffix.
    for (int k = 4; k < 2*n; k = k*2)
    {
        // Assigning rank and index values to first suffix
        int rank = 0;
        int prev_rank = suffixes[0].rank[0];
        suffixes[0].rank[0] = rank;
        ind[suffixes[0].index] = 0;

        // Assigning rank to suffixes
        for (int i = 1; i < n; i++)
        {
            // If first rank and next ranks are same as that of previous
            // suffix in array, assign the same new rank to this suffix
            if (suffixes[i].rank[0] == prev_rank &&
                    suffixes[i].rank[1] == suffixes[i-1].rank[1])
            {
                prev_rank = suffixes[i].rank[0];
                suffixes[i].rank[0] = rank;
            }
            else // Otherwise increment rank and assign
            {
                prev_rank = suffixes[i].rank[0];
                suffixes[i].rank[0] = ++rank;
            }
            ind[suffixes[i].index] = i;
        }

        // Assign next rank to every suffix
        for (int i = 0; i < n; i++)
        {
            int nextindex = suffixes[i].index + k/2;
            suffixes[i].rank[1] = (nextindex < n)?
                                suffixes[ind[nextindex]].rank[0]: -1;
        }

        // Sort the suffixes according to first k characters
        sort(suffixes, suffixes+n, cmp);
    }

    // Store indexes of all sorted suffixes in the suffix array
    vector<int>suffixArr;
    for (int i = 0; i < n; i++)
        suffixArr.push_back(suffixes[i].index);

    // Return the suffix array
    return suffixArr;
}

/* To construct and return LCP */
vector<int> kasai(string txt, vector<int> suffixArr)
{
    int n = suffixArr.size();

    // To store LCP array
    vector<int> lcp(n, 0);

    // An auxiliary array to store inverse of suffix array
    // elements. For example if suffixArr[0] is 5, the
    // invSuff[5] would store 0. This is used to get next
    // suffix string from suffix array.
    vector<int> invSuff(n, 0);

    // Fill values in invSuff[]
    for (int i=0; i < n; i++)
        invSuff[suffixArr[i]] = i;

    // Initialize length of previous LCP
    int k = 0;

    // Process all suffixes one by one starting from
    // first suffix in txt[]
    for (int i=0; i<n; i++)
    {
        /* If the current suffix is at n-1, then we don’t
        have next substring to consider. So lcp is not
        defined for this substring, we put zero. */
        if (invSuff[i] == n-1)
        {
            k = 0;
            continue;
        }

        /* j contains index of the next substring to
        be considered to compare with the present
        substring, i.e., next string in suffix array */
        int j = suffixArr[invSuff[i]+1];

        // Directly start matching from k'th index as
        // at-least k-1 characters will match
        while (i+k<n && j+k<n && txt[i+k]==txt[j+k])
            k++;

        lcp[invSuff[i]] = k; // lcp for the present suffix.

        // Deleting the starting character from the string.
        if (k>0)
            k--;
    }

    // return the constructed lcp array
    return lcp;
}

// Utility function to print an array
void printArr(vector<int>arr, int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    cout << endl;
}

// Driver program
int main()
{
    int t;
    cin >> t;
    //t = 1;

    while (t > 0)  {

        //string str = "banana";
        string str;

        cin >> str; // >> k;

        vector<int>suffixArr = buildSuffixArray(str, str.length());
        int n = suffixArr.size();

        cout << "Suffix Array : \n";
        printArr(suffixArr, n);

        vector<int>lcp = kasai(str, suffixArr);

        cout << "\nLCP Array : \n";
        printArr(lcp, n);

        // cum will hold number of substrings if that'a what you want (total = cum[n-1]
        cum[0] = n - suffixArr[0];

    //  vector <pair<int,int>> substrs[n];

        int count = 1;


        for (int i = 1; i <= n-suffixArr[0]; i++)  {
            //substrs[0].push_back({suffixArr[0],i});
            string sub_str = str.substr(suffixArr[0],i);
            cout << count << "  "  <<  sub_str << endl;
            count++;
        }

        for(int i = 1;i < n;i++)  {

            cum[i] = cum[i-1] + (n - suffixArr[i] - lcp[i - 1]);

            int end = n - suffixArr[i];
            int begin = lcp[i-1] + 1;
            int begin_suffix = suffixArr[i];

            for (int j = begin, k = 1; j <= end; j++, k++)  {

                //substrs[i].push_back({begin_suffix, lcp[i-1] + k});
        //      cout << "i push "  << i  << "   " << begin_suffix << " " << k << endl;
                string sub_str = str.substr(begin_suffix, lcp[i-1] +k);
                cout << count << "  "  <<  sub_str << endl;
                count++;

            }

        }

        /*int count = 1;

        cout << endl;

        for(int i = 0; i < n; i++){

            for (auto it = substrs[i].begin(); it != substrs[i].end(); ++it )    {

                string sub_str = str.substr(it->first, it->second);
                cout << count << "  "  <<  sub_str << endl;
                count++;
            }

        }*/


        t--;

    }

    return 0;
}
#include <iostream>
#include <string.h>
#include <vector>
#include <string>
#include <algorithm>
#include <time.h>

using namespace std;


char txt[100000], *p[100000];
int m, n;

int cmp(const void *p, const void *q) {
    int rc = memcmp(*(char **)p, *(char **)q, m);
    return rc;
}
int main() {
    std::cin >> txt;
    int start_s = clock();


    n = strlen(txt);
    int k; int i;
    int count = 1;
    for (m = 1; m <= n; m++) {
        for (k = 0; k+m <= n; k++)
            p[k] = txt+k;
        qsort(p, k, sizeof(p[0]), &cmp);
        for (i = 0; i < k; i++) {
            if (i != 0 && cmp(&p[i-1], &p[i]) == 0){
                continue;
            }
            char cur_txt[100000];
            memcpy(cur_txt, p[i],m);
            cur_txt[m] = '\0';
            std::cout << count << "  "  << cur_txt << std::endl;
            count++;
        }
    }

    cout << --count  << endl;

    int stop_s = clock();
    float run_time = (stop_s - start_s) / double(CLOCKS_PER_SEC);
    cout << endl << "distinct substrings  \t\tExecution time = " << run_time << " seconds" << endl;
    return 0;
}