Algorithm 如何验证二进制搜索树?

Algorithm 如何验证二进制搜索树?,algorithm,data-structures,binary-search-tree,Algorithm,Data Structures,Binary Search Tree,我在这里读到了一个访谈练习,称为验证二叉搜索树 这到底是怎么回事?验证二叉搜索树需要什么?我写过一个基本的搜索树,但从未听说过这个概念。“验证”二叉搜索树意味着您要检查它确实在左侧有所有较小的项目,在右侧有较大的项目。本质上,这是一种检查,看看一棵二叉树是否是一棵二叉搜索树。实际上,这是每个人在面试中都会犯的错误 必须对照(minLimitof节点、node.value)检查Leftchild 必须对照(node.value,节点的MaxLimit)检查Rightchild isvalidbts

我在这里读到了一个访谈练习,称为验证二叉搜索树


这到底是怎么回事?验证二叉搜索树需要什么?我写过一个基本的搜索树,但从未听说过这个概念。

“验证”二叉搜索树意味着您要检查它确实在左侧有所有较小的项目,在右侧有较大的项目。本质上,这是一种检查,看看一棵二叉树是否是一棵二叉搜索树。

实际上,这是每个人在面试中都会犯的错误

必须对照(minLimitof节点、node.value)检查Leftchild

必须对照(node.value,节点的MaxLimit)检查Rightchild

isvalidbtst(根,-无穷大,无穷大);
bool-isvalidbtst(二进制节点,int-MIN,int-MAX)
{
if(node==null)
返回true;
如果(node.element>MIN
&&node.element
另一种解决方案(如果空间不是约束):
按顺序遍历树并将节点值存储在数组中。如果数组是按排序的,则它是有效的BST,否则无效。

以下是我在Clojure中的解决方案:

(defstruct BST :val :left :right)

(defn in-order [bst]
  (when-let [{:keys [val, left, right]} bst]
    (lazy-seq
      (concat (in-order left) (list val) (in-order right)))))

(defn is-strictly-sorted? [col]
  (every?
    (fn [[a b]] (< a  b))
    (partition 2 1 col)))

(defn is-valid-BST [bst]
  (is-strictly-sorted? (in-order bst)))
(defstruct BST:val:左:右)
(按顺序定义[bst]
(当let[{:keys[val,left,right]}bst]
(续)
(concat(按顺序左)(list val)(按顺序右(())))
(defn是严格分类的?[col]
(每个?
(fn[[ab]](
“最好先定义一个不变量。这里的不变量是——顺序遍历中BST的任意两个连续元素的出现顺序必须严格递增(不能相等,总是按顺序遍历递增)。因此,解决方案可以只是一个简单的按序遍历,记住上次访问的节点,并将当前节点与上次访问的节点进行比较(“)。”

使用按序遍历的迭代解决方案

bool is_bst(Node *root) {
  if (!root)
    return true;

  std::stack<Node*> stack;
  bool started = false;
  Node *node = root;
  int prev_val;

  while(true) {
    if (node) {
      stack.push(node);
      node = node->left();
      continue;
    }
    if (stack.empty())
      break;
    node = stack.top();
    stack.pop();

    /* beginning of bst check */
    if(!started) {
      prev_val = node->val();
      started = true;
    } else {
      if (prev_val > node->val())
        return false;
      prev_val = node->val();
    }
    /* end of bst check */

    node = node->right();
  }
  return true;
}
bool是(节点*根){
如果(!root)
返回true;
std::堆栈;
bool start=false;
节点*节点=根;
国际通行证;
while(true){
如果(节点){
栈推(节点);
node=node->left();
继续;
}
if(stack.empty())
打破
node=stack.top();
stack.pop();
/*开始bst检查*/
如果(!已启动){
prev_val=节点->val();
开始=真;
}否则{
如果(上一个值>节点->值())
返回false;
prev_val=节点->val();
}
/*bst检查结束*/
node=node->right();
}
返回true;
}
递归解决方案:

isBinary(root)
    {
        if root == null 
          return true
       else if( root.left == NULL and root.right == NULL)
          return true
       else if(root.left == NULL)
           if(root.right.element > root.element)
               rerturn isBInary(root.right)
        else if (root.left.element < root.element)
              return isBinary(root.left)
        else
              return isBInary(root.left) and isBinary(root.right)

    }
isBinary(根)
{
如果root==null
返回真值
else if(root.left==NULL和root.right==NULL)
返回真值
else if(root.left==NULL)
if(root.right.element>root.element)
重新返回isBInary(root.right)
else if(root.left.element
bool二进制搜索树::验证(){
int minVal=-1;
int maxVal=-1;
返回ValidateImpl(root、minVal、maxVal);
}
bool二进制搜索树::ValidateImpl(节点*currRoot、int&minVal、int&maxVal)
{
int leftMin=-1;
int leftMax=-1;
int rightMin=-1;
int rightMax=-1;
if(currRoot==NULL)返回true;
如果(curroot->left){
如果(curroot->left->valuevalue){
如果(!ValidateImpl(currRoot->left,leftMin,leftMax))返回false;
如果(leftMax!=currRoot->left->value&&currRoot->valuevalue;
}
如果(curroot->right){
如果(currRoot->right->value->currRoot->value){
如果(!ValidateImpl(currRoot->right,rightMin,rightMax))返回false;
如果(rightMin!=currRoot->right->value&&currRoot->value>rightMin)返回false;
}
否则返回false;
}否则{
rightMin=rightMax=currRoot->value;
}
minVal=leftMinrightMax?leftMax:rightMax;
返回true;
}
//使用基于顺序遍历的Impl
bool二进制搜索树::validate(){
int val=-1;
返回ValidateImpl(root,val);
}
//基于顺序遍历的Impl
bool二进制搜索树::ValidateImpl(节点*currRoot,int&val){
if(currRoot==NULL)返回true;
如果(curroot->left){
如果(currRoot->left->value->currRoot->value)返回false;
如果(!ValidateImpl(currRoot->left,val))返回false;
}
如果(val>curroot->value)返回false;
val=currRoot->value;
如果(curroot->right){
如果(curroot->right->valuevalue)返回false;
如果(!ValidateImpl(currRoot->right,val))返回false;
}
返回true;
}
布尔isBST(节点根){
如果(root==null){return true;}
返回(isBST(root.left)和&(isBST(root.right)和&(root.left==null | | root.left.data root.data));
}

这里是不使用额外空间的迭代解决方案

Node{
     int value;
     Node right, left
  }

  public boolean ValidateBST(Node root){
    Node currNode = root;
    Node prevNode = null;
    Stack<Node> stack = new Stack<Node>();
    while(true){
        if(currNode != null){
            stack.push(currNode);
            currNode = currNode.left;
            continue;
        }
        if(stack.empty()){
            return;
        }
        currNode = stack.pop();
        if(prevNode != null){
            if(currNode.value < prevNode.value){
                return false;
            }
        }
        prevNode = currNode;
        currNode = currNode.right;
    }
}
节点{
int值;
右节点,左节点
}
公共布尔ValidateBST(节点根){
节点=根节点;
节点prevNode=null;
堆栈=新堆栈();
while(true){
if(currNode!=null){
stack.push(currNode);
currNode=currNode.left;
继续;
}
if(stack.empty()){
返回;
}
currNode=stack.pop();
if(prevNode!=null){
if(currNode.valuebool BinarySearchTree::validate() {
    int minVal = -1;
    int maxVal = -1;
    return ValidateImpl(root, minVal, maxVal);
}

bool BinarySearchTree::ValidateImpl(Node *currRoot, int &minVal, int &maxVal)
{
    int leftMin = -1;
    int leftMax = -1;
    int rightMin = -1;
    int rightMax = -1;

    if (currRoot == NULL) return true;

    if (currRoot->left) {
        if (currRoot->left->value < currRoot->value) {
            if (!ValidateImpl(currRoot->left, leftMin, leftMax)) return false;
            if (leftMax != currRoot->left->value && currRoot->value < leftMax)  return false;
        }
        else
            return false;
    } else {
        leftMin = leftMax = currRoot->value;
    }

    if (currRoot->right) {
        if (currRoot->right->value > currRoot->value) {
            if(!ValidateImpl(currRoot->right, rightMin, rightMax)) return false;
            if (rightMin != currRoot->right->value && currRoot->value > rightMin)  return false;
        }
        else return false;
    } else {
        rightMin = rightMax = currRoot->value;
    }

    minVal = leftMin < rightMin ? leftMin : rightMin;
    maxVal = leftMax > rightMax ? leftMax : rightMax;

    return true;
}
// using inorder traverse based Impl
bool BinarySearchTree::validate() {
    int val = -1;
    return ValidateImpl(root, val);
}

// inorder traverse based Impl
bool BinarySearchTree::ValidateImpl(Node *currRoot, int &val) {
    if (currRoot == NULL) return true;

    if (currRoot->left) {
        if (currRoot->left->value > currRoot->value) return false;
        if(!ValidateImpl(currRoot->left, val)) return false;
    }

    if (val > currRoot->value) return false;
    val = currRoot->value;

    if (currRoot->right) {
        if (currRoot->right->value < currRoot->value) return false;
        if(!ValidateImpl(currRoot->right, val)) return false;
    }
    return true;
}
boolean isBST(Node root) {
    if (root == null) { return true; }
    return (isBST(root.left) && (isBST(root.right) && (root.left == null || root.left.data <= root.data) && (root.right == null || root.right.data > root.data));
}
Node{
     int value;
     Node right, left
  }

  public boolean ValidateBST(Node root){
    Node currNode = root;
    Node prevNode = null;
    Stack<Node> stack = new Stack<Node>();
    while(true){
        if(currNode != null){
            stack.push(currNode);
            currNode = currNode.left;
            continue;
        }
        if(stack.empty()){
            return;
        }
        currNode = stack.pop();
        if(prevNode != null){
            if(currNode.value < prevNode.value){
                return false;
            }
        }
        prevNode = currNode;
        currNode = currNode.right;
    }
}
bool ValidateBST(Node *pCurrentNode, int nMin = INT_MIN, int nMax = INT_MAX)
{
    return
    (
        pCurrentNode == NULL
    )
    ||
    (
        (
            !pCurrentNode->pLeftNode ||
            (
                pCurrentNode->pLeftNode->value < pCurrentNode->value &&
                pCurrentNode->pLeftNode->value < nMax &&
                ValidateBST(pCurrentNode->pLeftNode, nMin, pCurrentNode->value)
            )
        )
        &&
        (
            !pCurrentNode->pRightNode ||
            (
                pCurrentNode->pRightNode->value > pCurrentNode->value &&
                pCurrentNode->pRightNode->value > nMin &&
                ValidateBST(pCurrentNode->pRightNode, pCurrentNode->value, nMax)
            )
        )
    );
}
static struct node *prev = NULL;

bool isBST(struct node* root)
{
    // traverse the tree in inorder fashion and keep track of prev node
    if (root)
    {
        if (!isBST(root->left))
          return false;

        // Allows only distinct valued nodes
        if (prev != NULL && root->data <= prev->data)
          return false;

        prev = root;

        return isBST(root->right);
    }

    return true;
}
#define MIN (FirstVal, SecondVal) ((FirstVal) < (SecondVal)) ? (FirstVal):(SecondVal)
#define MAX (FirstVal, SecondVal) ((FirstVal) > (SecondVal)) ? (FirstVal):(SecondVal)

template <class T>
bool IsValidBST (treeNode &root)
{

   T min,  max;
   return IsValidBST (root, &min, &max);
}

template <class T>
bool IsValidBST (treeNode *root, T *MIN , T *MAX)
{
   T leftMin, leftMax, rightMin, rightMax;
   bool isValidBST;

   if (root->leftNode == NULL && root->rightNode == NULL)
   {
      *MIN = root->element;
      *MAX = root->element;
      return true;
   }

  isValidBST = IsValidBST (root->leftNode, &leftMin, &leftMax);

  if (isValidBST)
    isValidBST = IsValidBST (root->rightNode, &rightMin, &rightMax);

  if (isValidBST)
  {
     *MIN = MIN (leftMIN, rightMIN);
     *Max = MAX (rightMax, leftMax);
  }

  return isValidBST;
}
bool isBST(struct node* root)
{
    static struct node *prev = NULL;
    // traverse the tree in inorder fashion and keep track of prev node
    if (root)
    {
        if (!isBST(root->left))
            return false;
        // Allows only distinct valued nodes
        if (prev != NULL && root->data <= prev->data)
            return false;
        prev = root;
        return isBST(root->right);
    }
    return true;
}
struct TreeNode
{
    int value;
    TreeNode* left;
    TreeNode* right;
};

bool isBST(TreeNode* root) {
    vector<TreeNode*> stack;
    TreeNode* prev = nullptr;
    while (root || stack.size()) {
        if (root) {
           stack.push_back(root);
           root = root->left;
        } else {
            if (prev && stack.back()->value <= prev->value)
                return false;
            prev = stack.back();
            root = prev->right;                    
            stack.pop_back();
        }
    }
    return true;
}
public boolean isValidBST(TreeNode root, TreeNode predecessor) {
    boolean left = true, right = true;
    if (root.left != null) {
        left = isValidBST(root.left, predecessor);
    }
    if (!left)
        return false;

    if (predecessor.val > root.val)
        return false;

    predecessor.val = root.val;
    if (root.right != null) {
        right = isValidBST(root.right, predecessor);
    }

    if (!right)
        return false;

    return true;

}
static class BSTValidator {
  private boolean lastNumberInitialized = false;
  private int lastNumber = -1;

  boolean isValidBST(TreeNode node) {
    if (node.left != null && !isValidBST(node.left)) return false;

    // In-order visiting should never see number less than previous
    // in valid BST.
    if (lastNumberInitialized && (lastNumber > node.getData())) return false;
    if (!lastNumberInitialized) lastNumberInitialized = true;

    lastNumber = node.getData();

    if (node.right != null && !isValidBST(node.right)) return false;

    return true;
  }
}
public boolean isValidBST(TreeNode root) {
    TreeNode pre = null, cur = root, tmp;
    while(cur != null) {
        if(cur.left == null) {
            if(pre != null && pre.val >= cur.val) 
                return false;
            pre = cur;
            cur = cur.right;
        }
        else {
            tmp = cur.left;
            while(tmp.right != null && tmp.right != cur)
                tmp = tmp.right;
            if(tmp.right == null) { // left child has not been visited
                tmp.right = cur;
                cur = cur.left;
            }
            else { // left child has been visited already
                tmp.right = null;
                if(pre != null && pre.val >= cur.val) 
                    return false;
                pre = cur;
                cur = cur.right;
            }
        }
    }
    return true;
}
public <T extends Comparable<T>> boolean isBst(TreeNode<T> root) {
    return isBst(root, null);
}

private <T extends Comparable<T>> boolean isBst(TreeNode<T> node, TreeNode<T> prev) {
    if (node == null)
        return true;

    if (isBst(node.left, prev) && (prev == null || prev.compareTo(node) < 0 ))
        return isBst(node.right, node);

    return false;
}
private static boolean checkBst(bst node) {

    Stack<bst> s = new Stack<bst>();
    bst temp;
    while(node!=null){
        s.push(node);
        node=node.left;
    }
    while (!s.isEmpty()){
        node = s.pop();
        System.out.println(node.val);
        temp = node;
        if(node.right!=null){
            node = node.right;
            while(node!=null)
            {
                //Checking if the current value is lesser than the previous value and ancestor.
                if(node.val < temp.val)
                    return false;
                if(!s.isEmpty())
                    if(node.val>s.peek().val)
                        return false;
                s.push(node);
                if(node!=null)
                node=node.left;
            }
        }
    }
    return true;
}
// time O(n), space O(logn)
// pseudocode
is-bst(node, min = int.min, max = int.max):
    if node == null:
        return true
    if node.value <= min || max < node.value:
        return false
    return is-bst(node.left, min, node.value)
        && is-bst(node.right, node.value, max)
// time O(n), space O(logn)
// pseudocode
is-bst(node, min = null, max = null):
    if node == null:
        return true
    if min != null && node.value <= min
        return false
    if max != null && max < node.value:
        return false
    return is-bst(node.left, min, node.value)
        && is-bst(node.right, node.value, max)
public class validateBinarySearchTree {
    public boolean isValidBST(TreeNode root) {
        return isBSTTraversal(root) && isBSTDivideAndConquer(root);
    }

    // Solution 1: Traversal
    // The inorder sequence of a BST is a sorted ascending list
    private int lastValue = 0; // the init value of it doesn't matter.
    private boolean firstNode = true;
    public boolean isBSTTraversal(TreeNode root) {
        if (root == null) {
            return true;
        }

        if (!isValidBST(root.left)) {
            return false;
        }

        // firstNode is needed because of if firstNode is Integer.MIN_VALUE,
        // even if we set lastValue to Integer.MIN_VALUE, it will still return false
        if (!firstNode && lastValue >= root.val) {
            return false;
        }

        firstNode = false;
        lastValue = root.val;

        if (!isValidBST(root.right)) {
            return false;
        }

        return true;

    }

    // Solution 2: divide && conquer
    private class Result {
        int min;
        int max;
        boolean isBST;
        Result(int min, int max, boolean isBST) {
            this.min = min;
            this.max = max;
            this.isBST = isBST;
        }
    }

    public boolean isBSTDivideAndConquer(TreeNode root) {
        return isBSTHelper(root).isBST;
    }

    public Result isBSTHelper(TreeNode root) {
        // For leaf node's left or right
        if (root == null) {
            // we set min to Integer.MAX_VALUE and max to Integer.MIN_VALUE
            // because of in the previous level which is the leaf level,
            // we want to set the min or max to that leaf node's val (in the last return line)
            return new Result(Integer.MAX_VALUE, Integer.MIN_VALUE, true);
        }

        Result left = isBSTHelper(root.left);
        Result right = isBSTHelper(root.right);

        if (!left.isBST || !right.isBST) {
            return new Result(0,0, false);
        }

        // For non-leaf node
        if (root.left != null && left.max >= root.val
                && root.right != null && right.min <= root.val) {
            return new Result(0, 0, false);
        }

        return new Result(Math.min(left.min, root.val),
                Math.max(right.max, root.val), true);
    }
}
public boolean isValid(Node node) {
    return isValid(node, Integer.MIN_VALUE, Integer.MAX_VALUE);
}

private boolean isValid(Node node, int minLimit, int maxLimit) {
    if (node == null)
        return true;
    return minLimit <= node.value && node.value <= maxLimit
            && isValid(node.left, minLimit, node.value)
            && isValid(node.right, node.value, maxLimit);
}
 private void validateBinarySearchTree(Node node) {
    if (node == null) return;

    Node left = node.getLeft();
    if (left != null) {
        if (left.getData() < node.getData()) {
            validateBinarySearchTree(left);
        } else {
            throw new IllegalStateException("Not a valid Binary Search tree");
        }
    }

    Node right = node.getRight();
    if (right != null) {
        if (right.getData() > node.getData()) {
            validateBinarySearchTree(right);
        } else {
            throw new IllegalStateException("Not a valid Binary Search tree");
        }
    }
}
""" Node is defined as
class node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
"""

def checkBST(root):
    return checkLeftSubTree(root, root.left) and checkRightSubTree(root, root.right)

def checkLeftSubTree(root, subTree):
    if not subTree:
        return True
    else:
        return root.data > subTree.data \
        and checkLeftSubTree(root, subTree.left) \ 
        and checkLeftSubTree(root, subTree.right) \
        and checkLeftSubTree(subTree, subTree.left) \
        and checkRightSubTree(subTree, subTree.right)

def checkRightSubTree(root, subTree):
    if not subTree:
        return True
    else:
        return root.data < subTree.data \ 
        and checkRightSubTree(root, subTree.left) \
        and checkRightSubTree(root, subTree.right) \
        and checkRightSubTree(subTree, subTree.right) \
        and checkLeftSubTree(subTree, subTree.left)
bool is_bst(Node *root, int from, int to) {
   return (root == NULL) ? true :
     root->val >= from && root->val <= to &&
     is_bst(root->left, from, root->val) &&
     is_bst(root->right, root->val, to);
}
private boolean isBST() {
    return isBST(root, null, null);

}

private boolean isBST(Node x, Key min, Key max) {
    if (x == null) return true;
    // when checking right subtree min is key of x's parent
    if (min != null && x.key.compareTo(min) <= 0) return false;
    // when checking left subtree, max is key of x's parent
    if (max != null && x.key.compareTo(max) >= 0) return false;
    // check left subtree and right subtree
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);

}
class Solution:
    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        return self.iterative(root)
        # return self.recurse(root, float("inf"), float("-inf"))

    def iterative(self, root):
        if not root:
            return True

        level = [[root, -float("inf"), float("inf")]]

        while level:
            next_level = []

            for element in level:
                node, min_val, max_val = element
                if min_val<node.val<max_val:
                    if node.left:
                        next_level.append([node.left, min_val, node.val])
                    if node.right:
                        next_level.append([node.right, node.val, max_val])
                else:
                    return False
            level = next_level

        return True

    def recurse(self, root, maxi, mini):
        if root is None:
            return True

        if root.val < mini or root.val > maxi:
            return False

        return self.recurse(root.left, root.val-1, mini) and self.recurse(root.right, maxi, root.val+1)
from __future__ import annotations
"""Checks if Binary Search Tree (BST) is balanced"""

from __future__ import annotations
import sys
from dataclasses import dataclass

MAX_KEY = sys.maxsize
MIN_KEY = -sys.maxsize - 1


@dataclass
class Node:
    value: int
    left: Node
    right: Node

    @property
    def is_leaf(self) -> bool:
        """Check if node is a leaf"""
        return not self.left and not self.right


def is_bst(node: Node, min_value: int, max_value: int) -> bool:
    if node.value < min_value or max_value < node.value:
        return False
    elif node.is_leaf:
        return True

    return is_bst(node.left, min_value, node.value) and is_bst(
        node.right, node.value, max_value
    )


if __name__ == "__main__":
    node5 = Node(5, None, None)
    node25 = Node(25, None, None)
    node40 = Node(40, None, None)
    node10 = Node(10, None, None)

    # balanced tree
    node30 = Node(30, node25, node40)
    root = Node(20, node10, node30)
    print(is_bst(root, MIN_KEY, MAX_KEY))

    # unbalanced tree
    node30 = Node(30, node5, node40)
    root = Node(20, node10, node30)
    print(is_bst(root, MIN_KEY, MAX_KEY))
    public bool IsBinarySearchTree(TreeNode root)
    {
        return IsValid(root, long.MinValue, long.MaxValue);
    }

    private static bool IsValid(TreeNode node, long min, long max)
    {
        if (node == null)
        {
            return true;
        }

        if (node.Value >= max || node.Value <= min)
        {
            return false;
        }

        return IsValid(node.Left, min, node.Value) && IsValid(node.Right, node.Value, max);
    }
   public class TreeNode
   {
       public int Value;
       public TreeNode Left;
       public TreeNode Right;

       public TreeNode(int value)
       {
           Value = value;
       }
   }