Android 1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2

Android 1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2,android,android-image,Android,Android Image,1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; /**解码数组中的非数据值*/ 私有静态final int SKIP=-1; 私有静态final int等于-2; /** *状态0-3正在读取下一个输入元组。 *状态4已读取一个“=”并准确地期望 *再来一个。 *状态5不需要更多的数据或填充字符 *在输入中。 *状态6为错误状态;检测到一个错误 *在输入中,没有未来的输入可以“修复”它。 */ 私有int状态;//州编号(0至6) 私有int值; 最终专用int[]字母表; 公共解码器(int标志,字节[]输出){ 这个。输出=输出; 字母表=((标志和URL安全)==0)?解码:解码Web安全; 状态=0; 数值=0; } /** *@返回过高估计的字节数{@code *len}字节可以解码为。 */ 公共整数maxOutputSize(整数长度){ 返回长度*3/4+10; } /** *解码另一块输入数据。 * *@如果状态机仍然正常,则返回true。假若 *在输入流中检测到错误的base-64数据。 */ 公共布尔进程(字节[]输入、整数偏移量、整数长度、布尔完成){ 如果(this.state==6)返回false; int p=偏移量; len+=偏移量; //使用局部变量可以使解码器达到12%左右 //比在中操作成员变量更快 //循环。(即使是字母表也可以测量 //差异,这让我有些惊讶,因为 //成员变量为final。) int state=this.state; int值=此.value; int op=0; 最终字节[]输出=this.output; 最终int[]字母表=此字母表; 而(p16; op+=3; p+=4; } 如果(p>=len)中断; } //快速路径不可用--或者我们已经阅读了 //部分元组或接下来的四个输入字节不是全部 //数据,或其他。返回到较慢的状态 //机器实现。 int d=字母表[输入[p++]&0xff]; 开关(状态){ 案例0: 如果(d>=0){ 数值=d; ++国家; }如果(d!=跳过),则为else{ 该状态=6; 返回false; } 打破 案例1: 如果(d>=0){ 值=(值=0){ 值=(值>4); 状态=4; }如果(d!=跳过),则为else{ 该状态=6; 返回false; } 打破 案例3: 如果(d>=0){ //发出输出三元组并返回到状态0。 值=(值>8); 输出[op]=(字节)(值>>16); op+=3; 状态=0; }else如果(d==等于){ //发出最后(部分)输出元组; //不需要更多的数据或填充字符。 输出[op+1]=(字节)(值>>2); 输出[op]=(字节)(值>>10); op+=2; 状态=5; }如果(d!=跳过),则为else{ 该状态=6; 返回false; } 打破 案例4: 如果(d==等于){ ++国家; }如果(d!=跳过),则为else{ 该状态=6; 返回false; } 打破 案例5: 如果(d!=跳过){ 该状态=6; 返回false; } 打破 } } 如果(!完成){ //我们没有输入,但未来的电话可以提供 //更多。 this.state=状态; 这个值=值; this.op=op; 返回真值
java.lang.IllegalArgumentException: bad base-64
at android.util.Base64.decode(Base64.java:161)
at android.util.Base64.decode(Base64.java:136)
at android.util.Base64.decode(Base64.java:118) 
@Override
    protected void onActivityResult(int requestCode, int resultCode, Intent data) {

        super.onActivityResult(requestCode, resultCode, data);

        if (requestCode == RESULT_LOAD_IMAGE && resultCode == RESULT_OK
                && null != data) {
            Uri selectedImage = data.getData();
            String[] filePathColumn = { MediaStore.Images.Media.DATA };

            Cursor cursor = getContentResolver().query(selectedImage,
                    filePathColumn, null, null, null);
            cursor.moveToFirst();

            int columnIndex = cursor.getColumnIndex(filePathColumn[0]);
            String picturePath = cursor.getString(columnIndex);
            cursor.close();
            profileimage.setImageBitmap(BitmapFactory.decodeFile(picturePath));
            profileimage.buildDrawingCache();
            Bitmap bm = profileimage.getDrawingCache();

            ByteArrayOutputStream bao = new ByteArrayOutputStream();

            // Resize the image
            double width = bm.getWidth();
            double height = bm.getHeight();
            double ratio = 100 / width;
            int newheight = (int) (ratio * height);

            System.out.println("———-width" + width);
            System.out.println("———-height" + height);
            System.out.println("———-height" + newheight);

            bm = Bitmap.createScaledBitmap(bm, 100, newheight, true);

            // Here you can define .PNG as well
            bm.compress(Bitmap.CompressFormat.JPEG, 95, bao);
            byte[] ba = bao.toByteArray();
            ba1 = Base64.encodeToString(ba, Base64.NO_WRAP);

            System.out.println("uploading image now ——–" + ba1);

        }

    }
public String makeServiceCall1(String url1, String a, final Context context) {
        this.url = url1;
        ArrayList<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();
        nameValuePairs.add(new BasicNameValuePair("profileimage", a));
        try {

            if (!isConnected(context)) {

                return url;
            }
            if (isConnected(context) == false) {
                Toast.makeText(context, "No Connection Available", 500).show();
            }

            URI uri = new URI(url.replace(" ", "%20"));
            Log.d("uri", url + "");

            HttpPost httppost = new HttpPost(uri);
            httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs));
            HttpParams httpParameters = httppost.getParams();

            int timeoutConnection = 100000;
            HttpConnectionParams.setConnectionTimeout(httpParameters,
                    timeoutConnection);

            int timeoutSocket = 100000;
            HttpConnectionParams.setSoTimeout(httpParameters, timeoutSocket);

            HttpResponse response = httpclient.execute(httppost);
            HttpEntity entity = response.getEntity();

            List<Cookie> cookies = httpclient.getCookieStore().getCookies();
            if (cookies.isEmpty()) {
                System.out.println("None");
            } else {
                for (int i = 0; i < cookies.size(); i++) {
                    System.out.println("- " + cookies.get(i).toString());
                }
            }
            int responseCode = response.getStatusLine().getStatusCode();

            if (response != null) {
                msg = EntityUtils.toString(entity);

            }
            Log.d("serverResponse", msg);

        } catch (Exception e) {
            e.printStackTrace();
        }
        return msg;
        // TODO Auto-generated method stub

    }
byte[] decodedString = Base64.decode(image, Base64.NO_WRAP);
    Bitmap decodedByte = BitmapFactory.decodeByteArray(decodedString, 0,
            decodedString.length);
profilepic.setImageBitmap(decodedByte);
String encodedImage = Base64.encodeToString(b, Base64.DEFAULT);
package com.colours.pipemedia.aws;
public class Base64 {
/**
 * Default values for encoder/decoder flags.
 */
public static final int DEFAULT = 0;

/**
 * Encoder flag bit to omit the padding '=' characters at the end
 * of the output (if any).
 */
public static final int NO_PADDING = 1;

/**
 * Encoder flag bit to omit all line terminators (i.e., the output
 * will be on one long line).
 */
public static final int NO_WRAP = 2;

/**
 * Encoder flag bit to indicate lines should be terminated with a
 * CRLF pair instead of just an LF.  Has no effect if {@code
 * NO_WRAP} is specified as well.
 */
public static final int CRLF = 4;

/**
 * Encoder/decoder flag bit to indicate using the "URL and
 * filename safe" variant of Base64 (see RFC 3548 section 4) where
 * {@code -} and {@code _} are used in place of {@code +} and
 * {@code /}.
 */
public static final int URL_SAFE = 8;

/**
 * Flag to pass to {@link Base64OutputStream} to indicate that it
 * should not close the output stream it is wrapping when it
 * itself is closed.
 */
public static final int NO_CLOSE = 16;

//  --------------------------------------------------------
//  shared code
//  --------------------------------------------------------

/* package */ static abstract class Coder {
    public byte[] output;
    public int op;


    public abstract boolean process(byte[] input, int offset, int len, boolean finish);


    public abstract int maxOutputSize(int len);
}

public static byte[] decode(String str, int flags) {
    return decode(str.getBytes(), flags);
}

/**
 * Decode the Base64-encoded data in input and return the data in
 * a new byte array.
 *
 * <p>The padding '=' characters at the end are considered optional, but
 * if any are present, there must be the correct number of them.
 *
 * @param input the input array to decode
 * @param flags  controls certain features of the decoded output.
 *               Pass {@code DEFAULT} to decode standard Base64.
 *
 * @throws IllegalArgumentException if the input contains
 * incorrect padding
 */
public static byte[] decode(byte[] input, int flags) {
    return decode(input, 0, input.length, flags);
}

/**
 * Decode the Base64-encoded data in input and return the data in
 * a new byte array.
 *
 * <p>The padding '=' characters at the end are considered optional, but
 * if any are present, there must be the correct number of them.
 *
 * @param input  the data to decode
 * @param offset the position within the input array at which to start
 * @param len    the number of bytes of input to decode
 * @param flags  controls certain features of the decoded output.
 *               Pass {@code DEFAULT} to decode standard Base64.
 *
 * @throws IllegalArgumentException if the input contains
 * incorrect padding
 */
public static byte[] decode(byte[] input, int offset, int len, int flags) {
    // Allocate space for the most data the input could represent.
    // (It could contain less if it contains whitespace, etc.)
    Decoder decoder = new Decoder(flags, new byte[len*3/4]);

    if (!decoder.process(input, offset, len, true)) {
        throw new IllegalArgumentException("bad base-64");
    }

    // Maybe we got lucky and allocated exactly enough output space.
    if (decoder.op == decoder.output.length) {
        return decoder.output;
    }

    // Need to shorten the array, so allocate a new one of the
    // right size and copy.
    byte[] temp = new byte[decoder.op];
    System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
    return temp;
}

/* package */ static class Decoder extends Coder {
    /**
     * Lookup table for turning bytes into their position in the
     * Base64 alphabet.
     */
    private static final int DECODE[] = {
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
        52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
        -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
        15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
        -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
        41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    };

    /**
     * Decode lookup table for the "web safe" variant (RFC 3548
     * sec. 4) where - and _ replace + and /.
     */
    private static final int DECODE_WEBSAFE[] = {
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,
        52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
        -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
        15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
        -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
        41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    };

    /** Non-data values in the DECODE arrays. */
    private static final int SKIP = -1;
    private static final int EQUALS = -2;

    /**
     * States 0-3 are reading through the next input tuple.
     * State 4 is having read one '=' and expecting exactly
     * one more.
     * State 5 is expecting no more data or padding characters
     * in the input.
     * State 6 is the error state; an error has been detected
     * in the input and no future input can "fix" it.
     */
    private int state;   // state number (0 to 6)
    private int value;

    final private int[] alphabet;

    public Decoder(int flags, byte[] output) {
        this.output = output;

        alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
        state = 0;
        value = 0;
    }

    /**
     * @return an overestimate for the number of bytes {@code
     * len} bytes could decode to.
     */
    public int maxOutputSize(int len) {
        return len * 3/4 + 10;
    }

    /**
     * Decode another block of input data.
     *
     * @return true if the state machine is still healthy.  false if
     *         bad base-64 data has been detected in the input stream.
     */
    public boolean process(byte[] input, int offset, int len, boolean finish) {
        if (this.state == 6) return false;

        int p = offset;
        len += offset;

        // Using local variables makes the decoder about 12%
        // faster than if we manipulate the member variables in
        // the loop.  (Even alphabet makes a measurable
        // difference, which is somewhat surprising to me since
        // the member variable is final.)
        int state = this.state;
        int value = this.value;
        int op = 0;
        final byte[] output = this.output;
        final int[] alphabet = this.alphabet;

        while (p < len) {
            // Try the fast path:  we're starting a new tuple and the
            // next four bytes of the input stream are all data
            // bytes.  This corresponds to going through states
            // 0-1-2-3-0.  We expect to use this method for most of
            // the data.
            //
            // If any of the next four bytes of input are non-data
            // (whitespace, etc.), value will end up negative.  (All
            // the non-data values in decode are small negative
            // numbers, so shifting any of them up and or'ing them
            // together will result in a value with its top bit set.)
            //
            // You can remove this whole block and the output should
            // be the same, just slower.
            if (state == 0) {
                while (p+4 <= len &&
                       (value = ((alphabet[input[p] & 0xff] << 18) |
                                 (alphabet[input[p+1] & 0xff] << 12) |
                                 (alphabet[input[p+2] & 0xff] << 6) |
                                 (alphabet[input[p+3] & 0xff]))) >= 0) {
                    output[op+2] = (byte) value;
                    output[op+1] = (byte) (value >> 8);
                    output[op] = (byte) (value >> 16);
                    op += 3;
                    p += 4;
                }
                if (p >= len) break;
            }

            // The fast path isn't available -- either we've read a
            // partial tuple, or the next four input bytes aren't all
            // data, or whatever.  Fall back to the slower state
            // machine implementation.

            int d = alphabet[input[p++] & 0xff];

            switch (state) {
            case 0:
                if (d >= 0) {
                    value = d;
                    ++state;
                } else if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;

            case 1:
                if (d >= 0) {
                    value = (value << 6) | d;
                    ++state;
                } else if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;

            case 2:
                if (d >= 0) {
                    value = (value << 6) | d;
                    ++state;
                } else if (d == EQUALS) {
                    // Emit the last (partial) output tuple;
                    // expect exactly one more padding character.
                    output[op++] = (byte) (value >> 4);
                    state = 4;
                } else if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;

            case 3:
                if (d >= 0) {
                    // Emit the output triple and return to state 0.
                    value = (value << 6) | d;
                    output[op+2] = (byte) value;
                    output[op+1] = (byte) (value >> 8);
                    output[op] = (byte) (value >> 16);
                    op += 3;
                    state = 0;
                } else if (d == EQUALS) {
                    // Emit the last (partial) output tuple;
                    // expect no further data or padding characters.
                    output[op+1] = (byte) (value >> 2);
                    output[op] = (byte) (value >> 10);
                    op += 2;
                    state = 5;
                } else if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;

            case 4:
                if (d == EQUALS) {
                    ++state;
                } else if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;

            case 5:
                if (d != SKIP) {
                    this.state = 6;
                    return false;
                }
                break;
            }
        }

        if (!finish) {
            // We're out of input, but a future call could provide
            // more.
            this.state = state;
            this.value = value;
            this.op = op;
            return true;
        }

        // Done reading input.  Now figure out where we are left in
        // the state machine and finish up.

        switch (state) {
        case 0:
            // Output length is a multiple of three.  Fine.
            break;
        case 1:
            // Read one extra input byte, which isn't enough to
            // make another output byte.  Illegal.
            this.state = 6;
            return false;
        case 2:
            // Read two extra input bytes, enough to emit 1 more
            // output byte.  Fine.
            output[op++] = (byte) (value >> 4);
            break;
        case 3:
            // Read three extra input bytes, enough to emit 2 more
            // output bytes.  Fine.
            output[op++] = (byte) (value >> 10);
            output[op++] = (byte) (value >> 2);
            break;
        case 4:
            // Read one padding '=' when we expected 2.  Illegal.
            this.state = 6;
            return false;
        case 5:
            // Read all the padding '='s we expected and no more.
            // Fine.
            break;
        }

        this.state = state;
        this.op = op;
        return true;
    }
}

//  --------------------------------------------------------
//  encoding
//  --------------------------------------------------------

/**
 * Base64-encode the given data and return a newly allocated
 * String with the result.
 *
 * @param input  the data to encode
 * @param flags  controls certain features of the encoded output.
 *               Passing {@code DEFAULT} results in output that
 *               adheres to RFC 2045.
 */
public static String encodeToString(byte[] input, int flags) {
    try {
        return new String(encode(input, flags), "US-ASCII");
    } catch (UnsupportedEncodingException e) {
        // US-ASCII is guaranteed to be available.
        throw new AssertionError(e);
    }
}

/**
 * Base64-encode the given data and return a newly allocated
 * String with the result.
 *
 * @param input  the data to encode
 * @param offset the position within the input array at which to
 *               start
 * @param len    the number of bytes of input to encode
 * @param flags  controls certain features of the encoded output.
 *               Passing {@code DEFAULT} results in output that
 *               adheres to RFC 2045.
 */
public static String encodeToString(byte[] input, int offset, int len, int flags) {
    try {
        return new String(encode(input, offset, len, flags), "US-ASCII");
    } catch (UnsupportedEncodingException e) {
        // US-ASCII is guaranteed to be available.
        throw new AssertionError(e);
    }
}

/**
 * Base64-encode the given data and return a newly allocated
 * byte[] with the result.
 *
 * @param input  the data to encode
 * @param flags  controls certain features of the encoded output.
 *               Passing {@code DEFAULT} results in output that
 *               adheres to RFC 2045.
 */
public static byte[] encode(byte[] input, int flags) {
    return encode(input, 0, input.length, flags);
}

/**
 * Base64-encode the given data and return a newly allocated
 * byte[] with the result.
 *
 * @param input  the data to encode
 * @param offset the position within the input array at which to
 *               start
 * @param len    the number of bytes of input to encode
 * @param flags  controls certain features of the encoded output.
 *               Passing {@code DEFAULT} results in output that
 *               adheres to RFC 2045.
 */
public static byte[] encode(byte[] input, int offset, int len, int flags) {
    Encoder encoder = new Encoder(flags, null);

    // Compute the exact length of the array we will produce.
    int output_len = len / 3 * 4;

    // Account for the tail of the data and the padding bytes, if any.
    if (encoder.do_padding) {
        if (len % 3 > 0) {
            output_len += 4;
        }
    } else {
        switch (len % 3) {
            case 0: break;
            case 1: output_len += 2; break;
            case 2: output_len += 3; break;
        }
    }

    // Account for the newlines, if any.
    if (encoder.do_newline && len > 0) {
        output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *
            (encoder.do_cr ? 2 : 1);
    }

    encoder.output = new byte[output_len];
    encoder.process(input, offset, len, true);

    assert encoder.op == output_len;

    return encoder.output;
}

/* package */ static class Encoder extends Coder {
    /**
     * Emit a new line every this many output tuples.  Corresponds to
     * a 76-character line length (the maximum allowable according to
     * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
     */
    public static final int LINE_GROUPS = 19;

    /**
     * Lookup table for turning Base64 alphabet positions (6 bits)
     * into output bytes.
     */
    private static final byte ENCODE[] = {
        'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
        'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
        'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
        'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',
    };

    /**
     * Lookup table for turning Base64 alphabet positions (6 bits)
     * into output bytes.
     */
    private static final byte ENCODE_WEBSAFE[] = {
        'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
        'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
        'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
        'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',
    };

    final private byte[] tail;
    /* package */ int tailLen;
    private int count;

    final public boolean do_padding;
    final public boolean do_newline;
    final public boolean do_cr;
    final private byte[] alphabet;

    public Encoder(int flags, byte[] output) {
        this.output = output;

        do_padding = (flags & NO_PADDING) == 0;
        do_newline = (flags & NO_WRAP) == 0;
        do_cr = (flags & CRLF) != 0;
        alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;

        tail = new byte[2];
        tailLen = 0;

        count = do_newline ? LINE_GROUPS : -1;
    }

    /**
     * @return an overestimate for the number of bytes {@code
     * len} bytes could encode to.
     */
    public int maxOutputSize(int len) {
        return len * 8/5 + 10;
    }

    public boolean process(byte[] input, int offset, int len, boolean finish) {
        // Using local variables makes the encoder about 9% faster.
        final byte[] alphabet = this.alphabet;
        final byte[] output = this.output;
        int op = 0;
        int count = this.count;

        int p = offset;
        len += offset;
        int v = -1;

        // First we need to concatenate the tail of the previous call
        // with any input bytes available now and see if we can empty
        // the tail.

        switch (tailLen) {
            case 0:
                // There was no tail.
                break;

            case 1:
                if (p+2 <= len) {
                    // A 1-byte tail with at least 2 bytes of
                    // input available now.
                    v = ((tail[0] & 0xff) << 16) |
                        ((input[p++] & 0xff) << 8) |
                        (input[p++] & 0xff);
                    tailLen = 0;
                };
                break;

            case 2:
                if (p+1 <= len) {
                    // A 2-byte tail with at least 1 byte of input.
                    v = ((tail[0] & 0xff) << 16) |
                        ((tail[1] & 0xff) << 8) |
                        (input[p++] & 0xff);
                    tailLen = 0;
                }
                break;
        }

        if (v != -1) {
            output[op++] = alphabet[(v >> 18) & 0x3f];
            output[op++] = alphabet[(v >> 12) & 0x3f];
            output[op++] = alphabet[(v >> 6) & 0x3f];
            output[op++] = alphabet[v & 0x3f];
            if (--count == 0) {
                if (do_cr) output[op++] = '\r';
                output[op++] = '\n';
                count = LINE_GROUPS;
            }
        }

        // At this point either there is no tail, or there are fewer
        // than 3 bytes of input available.

        // The main loop, turning 3 input bytes into 4 output bytes on
        // each iteration.
        while (p+3 <= len) {
            v = ((input[p] & 0xff) << 16) |
                ((input[p+1] & 0xff) << 8) |
                (input[p+2] & 0xff);
            output[op] = alphabet[(v >> 18) & 0x3f];
            output[op+1] = alphabet[(v >> 12) & 0x3f];
            output[op+2] = alphabet[(v >> 6) & 0x3f];
            output[op+3] = alphabet[v & 0x3f];
            p += 3;
            op += 4;
            if (--count == 0) {
                if (do_cr) output[op++] = '\r';
                output[op++] = '\n';
                count = LINE_GROUPS;
            }
        }

        if (finish) {
            // Finish up the tail of the input.  Note that we need to
            // consume any bytes in tail before any bytes
            // remaining in input; there should be at most two bytes
            // total.

            if (p-tailLen == len-1) {
                int t = 0;
                v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
                tailLen -= t;
                output[op++] = alphabet[(v >> 6) & 0x3f];
                output[op++] = alphabet[v & 0x3f];
                if (do_padding) {
                    output[op++] = '=';
                    output[op++] = '=';
                }
                if (do_newline) {
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                }
            } else if (p-tailLen == len-2) {
                int t = 0;
                v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |
                    (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
                tailLen -= t;
                output[op++] = alphabet[(v >> 12) & 0x3f];
                output[op++] = alphabet[(v >> 6) & 0x3f];
                output[op++] = alphabet[v & 0x3f];
                if (do_padding) {
                    output[op++] = '=';
                }
                if (do_newline) {
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                }
            } else if (do_newline && op > 0 && count != LINE_GROUPS) {
                if (do_cr) output[op++] = '\r';
                output[op++] = '\n';
            }

            assert tailLen == 0;
            assert p == len;
        } else {
            // Save the leftovers in tail to be consumed on the next
            // call to encodeInternal.

            if (p == len-1) {
                tail[tailLen++] = input[p];
            } else if (p == len-2) {
                tail[tailLen++] = input[p];
                tail[tailLen++] = input[p+1];
            }
        }

        this.op = op;
        this.count = count;

        return true;
    }
}

private Base64() { }   // don't instantiate
}
 import org.kobjects.base64.Base64;
ba1 = Base64.encodeToString(ba, Base64.DEFAULT);